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Efficient Reliable Circuits

The goal: To reduce the redundancy of an 
unreliable circuit simulating a reliable one.

The approach: To replace the repetition 
code with a more efficient one.
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Building Reliable Circuits

Prevent gate failures from making circuit 
failure rates prohibitively high.

Use error correcting codes to detect and 
correct circuit failures.
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Error Correcting Codes
An error-correcting code is a set of n-tuples
over an alphabet ∑, called codewords.

The distance between two codewords is the 
number of places in which they differ.

The minimum distance of a code is the 
minimum over all pairs of codewords of the 
distance between them.
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(n,k,d)q Block Codes
An (n,k,d)q block code.

Message length = k
Block length n
Rate R = k/n
Minimum distance d
Alphabet size = q

Shannon showed that, as k increase, R need 
not go to 0 to accommodate an error rate < .5
It is not known if this holds for computation.
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Hamming Code
Encode b = (b0, b1, b2, b3) as bG where

G is the generator matrix.
This is a (7,4,3)2 code. Why is d = 3?

Compare b1G and b2G where b1 ≠ b2.

Note that b1G ⊕b2G (term-by-term XOR) is equivalent to 
b3G where b3 = b1 ⊕b2.
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Generalized Hamming Code

Let n = 2k-1. The (n,k,3)2 Hamming code has 
the following generator matrix.

Here Bk x n-k contains all k-tuples except for  
0n-k and the weight 1 k-tuples.
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Decoding Hamming Codes

Let n = 2k-1. Form n x k matrix H.

If w is a Hamming codeword, wH = 0.
If w⊕e is received, s = (w⊕e)H = eH. Since 
all single errors can be corrected (|e| = 1), 
each syndrome s is associated with a 
unique row of H!
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Linear Block Codes
Generalization of Hamming Codes

In a linear block code, the vector sum of two 
codewords is another codeword.

Linear codes can be defined by generator 
matrices.

A basis exists for this linear space
A codeword is linear combination of basis vectors.
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Binary Error Correcting Codes

Let addition over ∑ be  ∆ (Exclusive OR)

The Hamming distance d(c,c’) between two 
binary codewords c, c’ is the weight (number 
of 1s in) of their component-wise sum ∆.

d(c,c’) = |(1,0,1,1,0,0)| = 3.
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Non-Binary Codes
Codewords defined over non-binary ∑.

Generally ∑ = F, a finite field.
All finite fields have |F| = pm for prime p and 
integer m. They are called Galois fields GF(pm).
Fields have addition (+) and multiplication (*) 
operators, constants 0 and 1. Usual associative 
and distributive laws hold.
Elements of GF(q) are {0, 1, α, α2,…, αq-2}, q=pm

Linear codes are codes in which the vector 
sum of two codewords is another codeword.
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Generating Linear Codewords
Codewords are linear combinations of the rows of a 
k×n matrix

A linear combination results from pre-multiplication 
of G by a binary vector u = (u0,u1,u2)

(1,1,0)G = (1,1,0,1,0).
Codeword c = (u0,u1,u2,c1,c2) where ui is an information 
bit and ci is a check bit
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More on Linear Codewords
Assume without loss of generality that rows 
of generator matrix are linearly independent.

Given input u e Fk, its codeword is c = uG.

A k×n generator matrix can be put into 
standard form by elementary row operations 
and column permutations, G = [Ik, A], where 
Ik is the k×k identity matrix and A is a k×(n-k)
matrix over F.
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The Parity Check Matrix

The parity check matrix where 
In-k is the (n-k)×(n-k) identity matrix.

Every codeword c generated by G is in the 
null space of H, that is, cH = 0. 

This follows because for some u, c = uG and 
GH = [Ik(-A)+ AIn-k] = 0 = [0k] where 0k is the k×k 
zero matrix. 
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The Minimum Distance of a 
Linear Code

The Hamming distance d(c1,c2) between 
two linear codewords c1 and c2 is the 
number of non-zero components in their 
term-by-term difference c1 - c2, that is, 
d(c1,c2) = |c1-c2|.

Because the difference between codewords
in a linear code is another codeword, the 
minimum distance d is the weight of the 
smallest weight codeword.
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Minimum Distance (Projection) 
Bound

Distance bound for (n,k,d)q codes: d ≤n-k+1
Project the qk codewords onto first k-1 positions.
By pigeon-hole principle, at least two codewords
have these k positions in common.
Thus, the minimum distance d ≤ n-k+1.
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Correcting Errors
If a codeword c is sent over a noisy channel and e
errors occur, e ≤ (d-1)/2, the resulting word r = c + e 
is closer (has fewer differences from) to the 
transmitted word than to any other codeword.

For c’ ≠ c, d(c’,c) =|c’-c| =|c’-r + r-c| ≤ |c’-r|+ |r-c| but |c’-c| ≥
d and |r-c| = e. Thus, |c’-r| ≥ (d+1)/2 and r is closer to c than 
to any other codeword.

Errors stat. independent with prob. p
P(e errors) =                             
Minimizing e minimizes prob of error
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Decoding a Linear Code
Given r, find closest codeword c’, i.e. D(r) = c’.

Can decoding errors occur?

Equivalently, given received word r compute the 
syndrome s = rH = (c+e)H = eH. 

The syndrome is a function only of the errors
Possible that r = c’ + e’ where |e’|  ≤ |e|.

Given r find smallest weight e’ satisfying s. Add to r. 
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(n,k,d)q Reed Solomon Codes

To encode message (a0,a1,…,an-1), ai in 
GF(q), evaluate s(x) = a0 +a1x + … +an-1xn-1

for all x in GF(q)

Codeword associated with (a0,a1,…,an-1) is           
s = (r(0), r(1), r(α), r(α2), …, r(αq-2))

Given y in GF(q), the n such that y = αn is the 
discrete log. It arises in cryptography.
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Fields (F,+,x,0,1)

F is a countable set, + and  are associative 
“addition” and “multiplication” operators
0 & 1 are identity under addition and 
multiplication respectively.

F is commutative and associative under + and x.
x distributes over +
Additive inverse exists for each element
Multiplicative inverse exists for F - {0}.
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Finite Fields (Galois Fields)

All finite fields have pn elements for p prime, 
n integer, denoted GF(pn).

Examples: GF(3), GF(8)

GF(pn) isomorphic to polynomials of degree 
n-1 over GF(p) where addition is component-
wise polynomial addition and multiplication is 
modulo an irreducible (no factors over GF(p)) 
polynomial over GF(p) of degree n.
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Example of Finite Field
GF(22) isomorphic to {p(x) = a0+a1x} where ai in 
GF(2) = {0,1}/mod 2.

Addition component-wise mod 2.
(x) + (1+x) = (1 + 2x) = (1) 

Multiplication is modulo x2+x+1.
(x) * (1+x) = (x + x2) mod x2+x+1 

Replace x2 by –(x+1) = x+1 and add
(x) * (1+x) = x+1+x = 1

(x) and (1+x) are multiplicative inverses
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Characterization of GF(q)

The multiplicative group of every Galois field 
is cyclic. I.e., all of the non-zero elements can 
be represented as powers of a generator α. 

GF(q) = {0, 1, α, …, αj , …, αq-2 }

Every y of GF(q) is root of xq-x.
Clearly, y = 0 is a root. Others are roots of xq-1-1
Since (x-1) is a factor of xq-1-1, 1 is in GF(q).
Other elements are roots of 1+x+x2+…+xq-1.
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(n,k,d)q Reed Solomon Codes

To encode message (a0,a1,…,an-1), a1 in 
GF(q), evaluate s(x) = a0 +a1x + … +an-1xn-1

for all x in GF(q)

Codeword associated with (a0,a1,…,an-1) is           
s = (r(0), r(1), r(α), r(α2), …, r(αq-2))

Given y in GF(q), the n such that y = αn is the 
discrete log. It arises in cryptography.
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Minimum Distance of RS 
Codes

Minimum dist. of (n,k,d)q RS code is d =n-k+1
Consider codewords s and t. 
Distance between them is non-zeroes in s-t = u.
But u(x) = s(x)-t(x) is polynomial of degree k-1.
But u(x) of degree k can have at most k-1 zeros. 
Thus, d ≥ n-k+1.
But d  ≤ n-k+1 for all (n,k,d)q codes.
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Implementing RS Codes

If Galois field is GF(2m), (n,k,n-k+1)q RS code 
(q = n = 2m) is a (n log2 n, k log2 n,n-k+1)2
binary code.
RS codes are used on CDs and DVDs to 
correct against burst errors due to dust or 
scratches.
Codewords can also be interlaced to help 
“decorrelate” errors.
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Encoding RS Codes

RS code is defined by k coefficients.

The code is linear (matrix non-sing.)
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Decoding (n,k,n-k+1)q Reed 
Solomon Codes

Let {βj | 1 ≤ j ≤ n} be elements of GF(q).

Sent codeword s = (r(β1), r(β2),…, r(βn)).

Received word r = (ρ1, ρ2, …, ρn)

RS code can correct up to (n-k)/2 errors.
Remaining n - (n-k)/2  = (n+k)/2 positions correct.

Decoding problem:
Given {(βj , ρj ) | 1 ≤ j ≤ n}, find polynomial p(x) over GF(q) 
with degree at most k such p(βj) = ρj for at least (n+k)/2 
values of j.
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Decoding RS Codes
Let F = GF(pm). 
The decoding function DH,F : FF Ø FH » {?} 
either maps received word a = (a1,a2,…, a|F|) 
to a codeword b = (b1,b2,…, b|F|) at distance  
≤ (|F| - |H|)/2 from it or it maps it to “?”.  

A decoder solves system with above matrix
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Extended RS Codes
Polynomial m(x): F Ø F associated with t: H Ø F

t: H Ø F is in FH ; m(x): F Ø F is in FF.

Elements of F = GF(pm) are denoted 0, α, α2, α3, …, 
αq-1 where q = pm.

RS codeword associated with  t: H Ø F is 
(m(0),m(α),…,m(αq-1)), where t(hi) = m(hi), 

m has |H| information bits, and |F| - |H| check bits.

Encoding function EH,F : FH Ø FF
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Generating 
Extended RS Codewords

Let F = GF(pm) and H Õ F where H = 
(h1,…,h|H|) and F = (f1,…,f|F|) 

Given  t: H Ø F, a function, let m(x): F Ø F
interpolate t over F, that is, m(hi) = t(hi).

Note: coefficients of m(x) are drawn from F.
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Decoding Reed Solomon 
Codes

Theorem The encoding and decoding functions 
EH,F : FH Ø FF and DH,F : FF Ø FH » {?} for RS 
codes can be computed by circuits of size |F| 
logO(1)|F|.

Proof Due to Justesen [76] and Sarwate [77].
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Error Correction Function

It maps a received word to either “?” or to a 
codeword, denoted

D’s superscript means it corrects ≤ k errors.

Theorem (Kaltofen-Pan) There’s a randomized 
algorithm solving k×k Toeplitz (elements on 
diagonals the same) over finite field with 
probability 1-1/k in time logO(1) k using 
k2logO(1) k processors.
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Probabilistic RS Decoding 
Algorithm

It maps a received word to either “?” or to a 
codeword, denoted

D’s superscript means it corrects ≤ k errors.

Theorem The decoding function         can be 
computed by a randomized parallel algorithm that 
takes                time on                              
processors to correct errors. The 
algorithm succeeds with prob. 1-1/|F|.
Use this algorithm with k =  
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Generalized RS Codes

Extend 2D RS codes to 2D generalized RS 
codes when F = GF(2m). 

Since F2 = GF(2(m+1)), F2 is also a finite field. 

Encode in first dimension, then in second. 
Decode in reverse order.

Components codeword are ax,y for x,y in F.
Can correct up to ((|F| - |H|)/2 )2 errors, (|F| - |H|)/2 
in each dimension separately.
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Spielman’s Approach to 
Reliable Computation

Encode data as 2D codewords A(x,y), B(x,y).

Apply polynomial f(x,y) to each value producing a 
new codeword C(x, y) = f(A(x,y), B(x,y)).

After applying f, decode and re-encode each row 
(then column) of C(x, y) separately. The result is a 
new codeword.

By permuting codewords, one can simulate 
computation on a hypercube.


