CS257 Introduction to Nanocomputing

Codes and Finite Fields

John E Savage

Lecture Outline

- Motivation
- Error Correcting Codes
- Reed Solomon Codes
- Spielman's approach

Efficient Reliable Circuits

- **The goal:** To reduce the redundancy of an unreliable circuit simulating a reliable one.
- The approach: To replace the repetition code with a more efficient one.

Building Reliable Circuits

- Prevent gate failures from making circuit failure rates prohibitively high.
- Use error correcting codes to detect and correct circuit failures.

Error Correcting Codes

- An error-correcting code is a set of *n*-tuples over an alphabet ∑, called codewords.
- The **distance** between two codewords is the number of places in which they differ.
- The **minimum distance** of a code is the minimum over all pairs of codewords of the distance between them.

(*n,k,d*)_q Block Codes

- An $(n,k,d)_{q}$ block code.
 - Message length = k
 - Block length n
 - Rate R = k/n
 - Minimum distance d
 - Alphabet size = q
- Shannon showed that, as k increase, R need not go to 0 to accommodate an error rate < .5
- It is not known if this holds for computation.

Hamming Code

- Encode $\mathbf{b} = (b_0, b_1, b_2, b_3)$ as $\mathbf{b}G$ where $G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$
 - G is the generator matrix.
- This is a $(7,4,3)_2$ code. Why is d = 3?
 - Compare $\boldsymbol{b}_1 G$ and $\boldsymbol{b}_2 G$ where $\boldsymbol{b}_1 \neq \boldsymbol{b}_2$.
 - Note that $\boldsymbol{b}_1 G \oplus \boldsymbol{b}_2 G$ (term-by-term XOR) is equivalent to $\boldsymbol{b}_3 G$ where $\boldsymbol{b}_3 = \boldsymbol{b}_1 \oplus \boldsymbol{b}_2$.

Generalized Hamming Code

 Let n = 2^k-1. The (n,k,3)₂ Hamming code has the following generator matrix.

$$G = \left[\begin{array}{cc} I_{k \times k} & B_{k \times n-k} \end{array} \right]$$

 Here B_{k x n-k} contains all k-tuples except for O^{n-k} and the weight 1 k-tuples.

Decoding Hamming Codes

- Let $n = 2^{k}$ -1. Form $n \times k$ matrix H. $H = \begin{bmatrix} B_{k \times n-k} \\ I_{n-k \times n-k} \end{bmatrix}$
- If *w* is a Hamming codeword, *w*H = **0**.
- If *w*⊕*e* is received, *s* = (w⊕*e*)H = *e*H. Since all single errors can be corrected (|*e*| = 1), each *syndrome s* is associated with a unique row of H!

Linear Block Codes

- Generalization of Hamming Codes
- In a linear block code, the vector sum of two codewords is another codeword.
- Linear codes can be defined by generator matrices.
 - A basis exists for this linear space
 - A codeword is linear combination of basis vectors.

Binary Error Correcting Codes

- Let addition over \sum be \oplus (Exclusive OR)
- The Hamming distance d(c,c') between two binary codewords c, c' is the weight (number of 1s in) of their component-wise sum ⊕.

 $(0, 1, 1, 0, 0, 1) \oplus (1, 1, 0, 1, 0, 1) = (1, 0, 1, 1, 0, 0)$

•
$$d(\mathbf{c},\mathbf{c'}) = |(1,0,1,1,0,0)| = 3.$$

Non-Binary Codes

- Codewords defined over non-binary \sum .
 - Generally $\sum = F$, a finite field.
 - All finite fields have |F| = p^m for prime p and integer m. They are called Galois fields GF(p^m).
 - Fields have addition (+) and multiplication (*) operators, constants 0 and 1. Usual associative and distributive laws hold.
 - Elements of GF(q) are {0, 1, α , α^2 ,..., α^{q-2} }, $q=p^m$
- Linear codes are codes in which the vector sum of two codewords is another codeword.

Generating Linear Codewords

 Codewords are linear combinations of the rows of a k×n matrix

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

- A linear combination results from pre-multiplication of *G* by a binary vector $\mathbf{u} = (u_0, u_1, u_2)$
 - (1,1,0)G = (1,1,0,1,0).
 - Codeword $c = (u_0, u_1, u_2, c_1, c_2)$ where u_i is an information bit and c_i is a check bit

More on Linear Codewords

- Assume without loss of generality that rows of generator matrix are linearly independent.
- Given input $\mathbf{u} \in F^k$, its codeword is $\mathbf{c} = \mathbf{u}G$.
- A k×n generator matrix can be put into standard form by elementary row operations and column permutations, G = [I_k, A], where I_k is the k×k identity matrix and A is a k×(n-k) matrix over F.

The Parity Check Matrix

- The **parity check matrix** $H = \begin{bmatrix} -A \\ I_{n-k} \end{bmatrix}$ where I_{n-k} is the $(n-k) \times (n-k)$ identity matrix.
- Every codeword c generated by G is in the null space of H, that is, cH = 0.
 - This follows because for some $\boldsymbol{u}, \boldsymbol{c} = \boldsymbol{u}G$ and $GH = [I_k(-A) + AI_{n-k}] = \boldsymbol{0} = [0_k]$ where 0_k is the $k \times k$ zero matrix.

The Minimum Distance of a Linear Code

- The Hamming distance $d(c_1, c_2)$ between two linear codewords c_1 and c_2 is the number of non-zero components in their term-by-term difference $c_1 - c_2$, that is, $d(c_1, c_2) = |c_1 - c_2|$.
- Because the difference between codewords in a linear code is another codeword, the minimum distance d is the weight of the smallest weight codeword.

Minimum Distance (Projection) Bound

- Distance bound for (n,k,d)_q codes: d ≤n-k+1
 - Project the q^k codewords onto first k-1 positions.
 - By pigeon-hole principle, at least two codewords have these k positions in common.
 - Thus, the minimum distance $d \le n-k+1$.

Correcting Errors

- If a codeword *c* is sent over a noisy channel and *e* errors occur, *e* ≤ (*d*-1)/2, the resulting word *r* = *c* + *e* is closer (has fewer differences from) to the transmitted word than to any other codeword.
 - For c' ≠ c, d(c',c) = |c'-c| = |c'-r + r-c| ≤ |c'-r|+ |r-c| but |c'-c| ≥ d and |r-c| = e. Thus, |c'-r| ≥ (d+1)/2 and r is closer to c than to any other codeword.
- Errors stat. independent with prob. p
- P(e errors) = $\binom{n}{e} p^e (1-p)^{n-e}$
- Minimizing e minimizes prob of error

Decoding a Linear Code

- Given r, find closest codeword c', i.e. D(r) = c'.
 - Can decoding errors occur?
- Equivalently, given received word *r* compute the syndrome s = rH = (c+e)H = eH.
 - The syndrome is a function only of the errors
 - Possible that r = c' + e' where $|e'| \le |e|$.
- Given *r* find smallest weight *e*' satisfying *s. A*dd to *r*.

(n,k,d)_q Reed Solomon Codes

- To encode **message** $(a_0, a_1, \dots, a_{n-1})$, a_i in GF(q), evaluate $s(x) = a_0 + a_1x + \dots + a_{n-1}x^{n-1}$ for all x in GF(q)
- Codeword associated with $(a_0, a_1, \dots, a_{n-1})$ is $\mathbf{s} = (r(0), r(1), r(\alpha), r(\alpha^2), \dots, r(\alpha^{q-2}))$
 - Given y in GF(q), the n such that y = αⁿ is the discrete log. It arises in cryptography.

Fields (F,+,x,0,1)

- F is a countable set, + and are associative "addition" and "multiplication" operators
- 0 & 1 are identity under addition and multiplication respectively.
 - F is commutative and associative under + and x.
 - x distributes over +
 - Additive inverse exists for each element
 - Multiplicative inverse exists for F {0}.

Finite Fields (Galois Fields)

- All finite fields have pⁿ elements for p prime, n integer, denoted GF(pⁿ).
 - Examples: GF(3), GF(8)
- GF(pⁿ) isomorphic to polynomials of degree n-1 over GF(p) where addition is componentwise polynomial addition and multiplication is modulo an irreducible (no factors over GF(p)) polynomial over GF(p) of degree n.

Example of Finite Field

- GF(2²) isomorphic to {p(x) = a₀+a₁x} where a_i in GF(2) = {0,1}/mod 2.
- Addition component-wise mod 2.

•
$$(x) + (1+x) = (1 + 2x) = (1)$$

- Multiplication is modulo x²+x+1.
 - (x) * $(1+x) = (x + x^2) \mod x^2 + x + 1$
 - Replace x^2 by -(x+1) = x+1 and add
 - (x) * (1+x) = x+1+x = 1
 - (x) and (1+x) are multiplicative inverses

Characterization of GF(q)

 The multiplicative group of every Galois field is cyclic. I.e., all of the non-zero elements can be represented as powers of a generator α.

•
$$GF(q) = \{0, 1, \alpha, ..., \alpha^{j}, ..., \alpha^{q-2}\}$$

- Every y of GF(q) is root of $x^{q}-x$.
 - Clearly, y = 0 is a root. Others are roots of $x^{q-1}-1$
 - Since (x-1) is a factor of $x^{q-1}-1$, 1 is in GF(q).
 - Other elements are roots of 1+x+x²+...+x^{q-1}.

(n,k,d)_q Reed Solomon Codes

- To encode **message** $(a_0, a_1, \dots, a_{n-1})$, a_1 in GF(q), evaluate $s(x) = a_0 + a_1x + \dots + a_{n-1}x^{n-1}$ for all x in GF(q)
- Codeword associated with $(a_0, a_1, \dots, a_{n-1})$ is $\mathbf{s} = (r(0), r(1), r(\alpha), r(\alpha^2), \dots, r(\alpha^{q-2}))$
 - Given y in GF(q), the n such that y = αⁿ is the discrete log. It arises in cryptography.

Minimum Distance of RS Codes

- Minimum dist. of $(n,k,d)_q$ RS code is d = n-k+1
 - Consider codewords **s** and **t**.
 - Distance between them is non-zeroes in s-t = u.
 - But u(x) = s(x)-t(x) is polynomial of degree k-1.
 - But u(x) of degree k can have at most k-1 zeros.
 - Thus, $d \ge n k + 1$.
 - But $d \le n-k+1$ for all $(n,k,d)_q$ codes.

Implementing RS Codes

- If Galois field is GF(2^m), (n,k,n-k+1)_q RS code (q = n = 2^m) is a (n log₂ n, k log₂ n,n-k+1)₂ binary code.
- RS codes are used on CDs and DVDs to correct against burst errors due to dust or scratches.
- Codewords can also be interlaced to help "decorrelate" errors.

Encoding RS Codes

• RS code is defined by k coefficients.

$$m(0) = m_0 m(\alpha) = m_0 + m_1 \alpha + \dots + m_k \alpha^k m(\alpha^2) = m_0 + m_1 \alpha^2 + \dots + m_k \alpha^{2(k-1)} \vdots m(\alpha^{q-1}) = m_0 + m_1 \alpha^{q-1} + \dots + m_k \alpha^{(q-1)(k-1)}$$

• The code is linear (matrix non-sing.)

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & \alpha & \alpha^2 & \cdots & \alpha^{(q-1)} \\ 1 & \alpha^2 & \alpha^4 & \cdots & \alpha^{2(q-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha^{q-1} & \alpha^{2(q-1)} & \cdots & \alpha^{(q-1)(q-1)} \end{bmatrix} \cdot \begin{bmatrix} m_0 \\ m_1 \\ m_2 \\ \vdots \\ m_{q-1} \end{bmatrix} = \begin{bmatrix} m(0) \\ m(\alpha) \\ m(\alpha^2) \\ \vdots \\ m(\alpha^{q-1}) \end{bmatrix}$$

Lect 08 Coded Computation I

CS257 © John E Savage

Decoding (*n,k,n-k*+1)_q Reed Solomon Codes

- Let $\{\beta_j \mid 1 \le j \le n\}$ be elements of GF(q).
- Sent codeword $\mathbf{s} = (r(\beta_1), r(\beta_2), ..., r(\beta_n)).$
- Received word $\mathbf{r} = (\rho_1, \rho_2, ..., \rho_n)$
- RS code can correct up to (*n-k*)/2 errors.
 - Remaining n (n-k)/2 = (n+k)/2 positions correct.
- Decoding problem:
 - Given $\{(\beta_j, \rho_j) \mid 1 \le j \le n\}$, find polynomial p(x) over GF(q) with degree at most k such $p(\beta_j) = \rho_j$ for at least (n+k)/2 values of j.

Decoding RS Codes

- Let $F = GF(p^m)$.
- The decoding function $D_{H,F} : F^F \to F^H \cup \{?\}$ either maps received word $\mathbf{a} = (a_1, a_2, ..., a_{|F|})$ to a codeword $\mathbf{b} = (b_1, b_2, ..., b_{|F|})$ at distance $\leq (|F| - |H|)/2$ from it or it maps it to "?".

• A decoder solves system with above matrix

Extended RS Codes

- Polynomial m(x): F → F associated with τ: H → F
 τ: H → F is in F^H; m(x): F → F is in F^F.
- Elements of F = GF(p^m) are denoted 0, α , α^2 , α^3 , ..., α^{q-1} where $q = p^m$.
- RS codeword associated with $\tau: H \to F$ is $(m(0), m(\alpha), \dots, m(\alpha^{q-1}))$, where $\tau(h_i) = m(h_i)$,
 - m has |H| information bits, and |F| |H| check bits.
- Encoding function $E_{H,F}$: $F^H \to F^F$

Generating Extended RS Codewords

- Let $F = GF(p^m)$ and $H \subset F$ where $H = (h_1, \dots, h_{|H|})$ and $F = (f_1, \dots, f_{|F|})$
- Given $\tau: H \to F$, a function, let $m(x): F \to F$ interpolate τ over F, that is, $m(h_i) = \tau(h_i)$.

$$m(x) = \sum_{i=1}^{|H|} \tau(h_i) \frac{\prod_{j \neq i} (x - h_j)}{\prod_{j \neq i} (h_i - h_j)}$$

= $m_0 + m_1 x + m_2 x^2 + \dots m_{|H| - 1} x^{|H| - 1}$

• Note: coefficients of m(x) are drawn from F.

Decoding Reed Solomon Codes

Theorem The encoding and decoding functions $E_{H,F}: F^H \to F^F$ and $D_{H,F}: F^F \to F^H \cup \{?\}$ for RS codes can be computed by circuits of size |F| $\log^{O(1)}|F|$.

Proof Due to Justesen [76] and Sarwate [77].

Error Correction Function

- It maps a received word to either "?" or to a codeword, denoted $D_{H,F}^k : F^F \mapsto F^F \cup \{?\}$
 - *D*'s superscript means it corrects $\leq k$ errors.
- **Theorem** (Kaltofen-Pan) There's a randomized algorithm solving $k \times k$ Toeplitz (elements on diagonals the same) over finite field with probability 1-1/k in time $\log^{O(1)} k$ using $k^2\log^{O(1)} k$ processors.

Probabilistic RS Decoding Algorithm

- It maps a received word to either "?" or to a codeword, denoted $D_{H,F}^k : F^F \mapsto F^F \cup \{?\}$
 - *D*'s superscript means it corrects $\leq k$ errors.
- **Theorem** The decoding function $D_{H,F}^k$ can be computed by a randomized parallel algorithm that takes $\log^{O(1)} |F|$ time on $(k^2 + |F|) \log^{O(1)} |F|$ processors to correct $k \le (|F| - |H|)/2$ errors. The algorithm succeeds with prob. 1-1/|*F*|.
- Use this algorithm with $k = \sqrt{|F|}$

Generalized RS Codes

- Extend 2D RS codes to 2D generalized RS codes when F = GF(2^m).
 - Since $F^2 = GF(2^{(m+1)})$, F^2 is also a finite field. $E_{H^2,F} : F^{H^2} \mapsto F^{F^2}, D^k_{H^2,F} : F^{F^2} \mapsto F^{F^2} \cup \{?\}$
- Encode in first dimension, then in second. Decode in reverse order.
 - Components codeword are $a_{x,y}$ for x,y in F.
 - Can correct up to ((|F| |H|)/2)² errors, (|F| |H|)/2 in each dimension separately.

Spielman's Approach to Reliable Computation

- Encode data as 2D codewords A(x,y), B(x,y).
- Apply polynomial \u03c6(x,y) to each value producing a new codeword C(x, y) = \u03c6(A(x,y), B(x,y)).
- After applying \u03c6, decode and re-encode each row (then column) of C(x, y) separately. The result is a new codeword.
- By permuting codewords, one can simulate computation on a hypercube.

Lect 08 Coded Computation I