CS257
Introduction to
Nanocomputing

Codes and Finite Fields

John E Savage

Lecture Outline

e Motivation
e Error Correcting Codes
e Reed Solomon Codes

e Spielman’s

Lect 08 Coded Computation | CS257 © John E Savage

Efficient Reliable Circuits

e The goal: To reduce the redundancy of an
unreliable circuit simulating a reliable one.

e The approach: To replace the repetition
code with a more efficient one.

Lect 08 Coded Computation | CS257 © John E Savage 3

Building Reliable Circuits

e Prevent gate failures from making circuit
failure rates prohibitively high.

e Use error correcting codes to detect and
correct circuit failures.

Lect 08 Coded Computation | CS257 © John E Savage

Error Correcting Codes

e An error-correcting code is a set of n-tuples
over an alphabet), called codewords.

e he distance between two codewords is the
number of places in which they differ.

e The minimum distance of a code is the
minimum over all pairs of codewords of the
distance between them.

Lect 08 Coded Computation | CS257 © John E Savage 5

(n.,k,d), Block Codes

e An (n,k,d)q block code.
Message length = k
Block length n
Rate R = k/n
Minimum distance d
Alphabet size =q

e Shannon showed that, as k increase, R need
not go to 0 to accommodate an error rate < .5

e |t is not known if this holds for computation.

Lect 08 Coded Computation | CS257 © John E Savage 6

Hamming Code

e Encodeb =(b, b,, b,, by) as bG

G =

1 O
O 1
O O
O O

G is the generator matrix.
e Thisisa(7,4,3), code. Why is d = 37
Compare b,G and b,G where b, =b,

Note that b,G @b ,G (term-by-term XOR) is equivalent to
b;Gwhereb;=b,®b,

Lect 08 Coded Computation | CS257 © John E Savage 7

Generalized Hamming Code

e Let n = 2-1. The (n,k,3), Hamming code has
the following generator matrix.

G = [Ipxk Brxn—k }

e Here B, , . contains all k-tuples except for
0" and the weight 1 k-tuples.

Lect 08 Coded Computation | CS257 © John E Savage 8

Decoding Hamming Codes

e Let n = 2%-1. Form n x k matrix H.

77— | BPrxn—k
I Ly kxn—k]

e If wis a Hamming codeword, wH = 0.

o If w®e Is received, s = (wde)H = eH. Since
all single errors can be corrected (le| = 1),
each syndrome s is associated with a
unique row of H!

Lect 08 Coded Computation | CS257 © John E Savage 9

Linear Block Codes

e Generalization of Hamming Codes

e |In a linear block code, the vector sum of two
codewords Is another codeword.

e Linear codes can be defined by generator
matrices.
A basis exists for this linear space
A codeword is linear combination of basis vectors.

Lect 08 Coded Computation | CS257 © John E Savage 10

Binary Error Correcting Codes

e Let addition over Y be & (Exclusive OR)

e The Hamming distance d(c,c’) between two
binary codewords c, ¢’ is the weight (number
of 1s in) of their component-wise sum .

(0,1,1,0,0,1)e(1,1,0,1,0,1) =(1,0,1,1,0,0)

e d(c,c’) =((1,0,1,1,0,0)| = 3.

Lect 08 Coded Computation | CS257 © John E Savage 11

Non-Binary Codes

e Codewords defined over non-binary .
Generally > = F, a finite field.

All finite fields have |F| = p™ for prime p and
integer m. They are called Galois fields GF(p™).

Fields have addition (+) and multiplication (*)
operators, constants 0 and 1. Usual associative
and distributive laws hold.

Elements of GF(q) are {0, 1, a, o?,..., 92}, g=p™

e Linear codes are codes in which the vector
sum of two codewords is another codeword.

Lect 08 Coded Computation | CS257 © John E Savage 12

Generating Linear Codewords

e Codewords are linear combinations of the rows of a
kxn matrix

1 0 0 1 1]
G=|01 001
0011 1]

e A linear combination results from pre-multiplication
of G by a binary vector u = (u,u,,u,)
(1,1,0)G = (1,1,0,1,0).

Codeword ¢ = (up,u,,U,C4,C,) Where u; is an information
bit and c; is a check bit

Lect 08 Coded Computation | CS257 © John E Savage 13

More on Linear Codewords

e Assume without loss of generality that rows
of generator matrix are linearly independent.

e Giveninputu e 7 its codeword isc =uG.

e A kxn generator matrix can be put into
standard form by elementary row operations
and column permutations, G = [/,, A], where
|, 1s the kxk identity matrix and A is a kx(n-k)
matrix over F.

Lect 08 Coded Computation | CS257 © John E Savage 14

The Parity Check Matrix

e The parity check matrix H = [[Ak] where
| is the (h-k)x(n-k) identity matrix.

e Every codeword ¢ generated by G is in the
null space of H, that is, cH = 0.

This follows because for some u, ¢ =uG and
=[l(-A)+ Al_,] =0 =[0,] where 0, is the kxk
zero matrix.

Lect 08 Coded Computation | CS257 © John E Savage 15

The Minimum Distance of a
Linear Code

e The Hamming distance d(c,,c,) between
two linear codewords c, and c, is the
number of non-zero components in their
term-by-term difference c, - c,, that is,

d(C4,Cy =csCyl.

e Because the difference between codewords
In a linear code Is another codeword, the
minimum distance d is the weight of the
smallest weight codeword.

Lect 08 Coded Computation | CS257 © John E Savage 16

Minimum Distance (Projection)
Bound

e Distance bound for (n,k,d), codes: d sn-k+1
Project the gk codewords onto first k-1 positions.

By pigeon-hole principle, at least two codewords
have these k positions in common.

Thus, the minimum distance d < n-k+1.

Lect 08 Coded Computation | CS257 © John E Savage 17

Correcting Errors

e If a codeword c is sent over a noisy channel and e
errors occur, e < (d-1)/2, the resultingwordr =c +e
Is closer (has fewer differences from) to the
transmitted word than to any other codeword.

Forc’ #c, d(c’,c) =|c’-c| =|c’-r + r-c| < |c’-r|+ |r-c| but |c’-c| =
d and |r-c| = e. Thus, |c’-r| 2 (d+1)/2 and r is closer to ¢ than
to any other codeword.

e Errors stat. independent with prob. p
e P(e errors) = (Z)pe(l —p)"e
e Minimizing e minimizes prob of error

Lect 08 Coded Computation | CS257 © John E Savage 18

Decoding a Linear Code

e Givenr, find closest codeword c’, i.e. D(r) =c’.
Can decoding errors occur?

e Equivalently, given received word r compute the
syndrome s =rH = (c+e)H = eH.
The syndrome is a function only of the errors
Possible thatr = ¢’ + e’ where |e’| < |e|.

e Given r find smallest weight e’ satisfying s. Add to r.

Lect 08 Coded Computation | CS257 © John E Savage 19

(n,k,d), Reed Solomon Codes

e To encode message (a,,a4,...,a,.4), aIn
GF(q), evaluate s(x) = a, +a,x + ... +a__,x""
for all x in GF(q)

e Codeword associated with (ay,aq,...,a,) is
s = (r(0), r(1), r(a), r(a?), ..., r(a??))
Given y in GF(q), the n such that y = ais the
discrete log. It arises in cryptography.

Lect 08 Coded Computation | CS257 © John E Savage 20

Fields (F,+,x,0,1)

e [is a countable set, + and are associative
“addition” and “multiplication” operators

e 0 & 1 are identity under addition and

multiplication respectively.
F Is commutative and associative under + and x.

x distributes over +
Additive inverse exists for each element

Multiplicative inverse exists for F - {0}.

Lect 08 Coded Computation | CS257 © John E Savage 21

Finite Fields (Galois Fields)

e All finite fields have p" elements for p prime,
n integer, denoted GF(p”).

Examples: GF(3), GF(8)

e GF(p") isomorphic to polynomials of degree
n-1 over GF(p) where addition is component-
wise polynomial addition and multiplication is
modulo an irreducible (no factors over GF(p))
polynomial over GF(p) of degree n.

Lect 08 Coded Computation | CS257 © John E Savage 22

Example of Finite Field

e GF(22) isomorphic to {p(x) = a,+a,x} where a, in
GF(2) = {0,1}/mod 2.

e Addition component-wise mod 2.
(x) + (1+x) = (1 + 2x) = (1)

e Multiplication is modulo x?+x+1.
(X) * (1+x) = (X + x2) mod x2+x+1
Replace x?2 by —(x+1) = x+1 and add
(X) * (1+x) = x+1+x =1
= (x) and (1+x) are multiplicative inverses

Lect 08 Coded Computation | CS257 © John E Savage 23

Characterization of GF(q)

e The multiplicative group of every Galois field
is cyclic. l.e., all of the non-zero elements can
be represented as powers of a generator o.

GF(@)={0,1, a, ..., ¢, ..., a9?}

e Every y of GF(Qq) Is root of x9-x.
Clearly, y = 0 is a root. Others are roots of x%-7-1
Since (x-1) is a factor of x41-1, 1 is in GF(q).
Other elements are roots of 1+x+x2+...+x%1,

Lect 08 Coded Computation | CS257 © John E Savage 24

(n,k,d), Reed Solomon Codes

e To encode message (a,,a4,...,a8,.¢), a4in
GF(q), evaluate s(x) = a, +a,x + ... +a__,x""
for all x in GF(q)

e Codeword associated with (ay,aq,...,a,) is
s = (r(0), r(1), r(a), r(a?), ..., r(a??))
Given y in GF(q), the n such that y = ais the
discrete log. It arises in cryptography.

Lect 08 Coded Computation | CS257 © John E Savage 25

Minimum Distance of RS
Codes

e Minimum dist. of (n,k,d)q RS code is d =n-k+1
Consider codewords s and t.
Distance between them is non-zeroes in s-t = u.
But u(x) = s(x)-t(x) is polynomial of degree k-1.
But u(x) of degree k can have at most k-7 zeros.
Thus, d = n-k+1.
But d < n-k+1 for all (n,k,d), codes.

Lect 08 Coded Computation | CS257 © John E Savage 26

Implementing RS Codes

e If Galois field is GF(2™), (n,k,n-k+1), RS code
(=n=2Misa (nlog, n, klog, n,n-k+1),
binary code.

e RS codes are used on CDs and DVDs to
correct against burst errors due to dust or
scratches.

e Codewords can also be interlaced to help
“decorrelate” errors.

Lect 08 Coded Computation | CS257 © John E Savage 27

Encoding RS Codes

e RS code is defined by k coefficients.

m(0) = mo

m(a) = mo+mia+...+ miak

m(a?) = mo+mia®+... + mpa2k-D
m(a?) = mo+mia? !t + ...+ myale-DED

e The code is linear (matrix non-sing.)

1 0 0 e 0 T mo] - m(0)
1 « a? e ali—1) ma m(a)
1 ao? at R s . : mo = m(a?)
1 atl o2@D ... oaD@D | | me | | m(as?) |

Lect 08 Coded Computation | CS257 © John E Savage 28

Decoding (n,k,n-k+1), Reed
Solomon Codes

o Let{B;|1=/=n}be elements of GF(q).
e Sent codeword s = (r(B,), r(B,),---, r(B,))-
e Received word r = (p,, po -+, P,)

e RS code can correct up to (n-k)/2 errors.
Remaining n - (n-k)/2 = (n+k)/2 positions correct.

e Decoding problem:

Given {(B;, p;) | 1 =j = n}, find polynomial p(x) over GF(q)
with degree at most k such pP(B)) = p, for at least (n+k)/2
values of J.

Lect 08 Coded Computation | CS257 © John E Savage 29

Decoding RS Codes

o Let F=GF(p™).

e The decoding function D, - : F-— F" U {7}
either maps received word a = (a,,a,, ..., ap)
to a codeword b = (b,,b,,..., b) at distance
< (|F| - |H|)/2 from it or it maps it to “?".

(1 0 0 . 0
1 o a? e ola—1)
1 a2 o’ o2(@—1)
i oﬂ-_l a2(‘.1—1) .. Oé(q—l.)(q—l)

e A decoder solves system with above matrix

Lect 08 Coded Computation | CS257 © John E Savage 30

Extended RS Codes

e Polynomial m(x): F - F associated witht: H - F
:H- Fisin F7; m(x): F > Fisin F.

e Elements of F = GF(p™) are denoted 0, a, a?, a?, ...,
a?’ where q = p™.

e RS codeword associated with : H - Fis
(m(0),m(a),...,m(a%7)), where t(h) = m(h,),

m has |H| information bits, and |F| - |H| check bits.

e Encoding function £, - : F" - F~

Lect 08 Coded Computation | CS257 © John E Savage 31

Generating
Extended RS Codewords

o Let F=GF(p™) and Hc Fwhere H =
(hys-.,hyy) and F=(f,...f5)

e Given 1: H— F, afunction, let m(x): F - F
interpolate t over F, that is, m(h)) = t(h,).

_ «IH] N1jzi(e—hy)
m(a:) - Zi:l T(hZ)H;;&Z'(hz'—hj)

= mg + mix + mgzvz + ... m|H|_1:U|H|_1

e Note: coefficients of m(x) are drawn from F.

Lect 08 Coded Computation | CS257 © John E Savage 32

Decoding Reed Solomon
Codes

Theorem The encoding and decoding functions
Enp:F"— Frand D, : F©— F7 U {?} for RS
codes can be computed by circuits of size |F|
log®M|F.

Proof Due to Justesen [76] and Sarwate [77].

Lect 08 Coded Computation | CS257 © John E Savage 33

Error Correction Function

e |t maps a received word to either “?” or to a
codeword, denoted D%, .. : F¥' — FFu {7}
D's superscript means it corrects < k errors.

Theorem (Kaltofen-Pan) There’s a randomized
algorithm solving kxk Toeplitz (elements on
diagonals the same) over finite field with
probability 7-71/k in time log®" k using
k?log®(") k processors.

Lect 08 Coded Computation | CS257 © John E Savage 34

Probabilistic RS Decoding
Algorithm

e It maps a received word to either “?” or to a
codeword, denoted Df; - : F¥" — Fu {7}
D’s superscript means it corrects < k errors.

Theorem The decoding function Df; - can be
computed by a randomized parallel algorithm that
takes log®M) |F| time on (k2 + |F|) log?D) | F|
processors to correctr < (|F| - |H|)/2 errors. The
algorithm succeeds with prob. 1-1/|F|.

e Use this algorithm with k = /IF|

Lect 08 Coded Computation | CS257 © John E Savage 35

Generalized RS Codes

e Extend 2D RS codes to 2D generalized RS
codes when F = GF(2™).

Since F? = GF(2(m1), F? is also a finite field.

2 2 2 2
B pt FI o FFY D ot FP7 o FETUAT)

e Encode in first dimension, then in second.
Decode in reverse order.
Components codeword are a, , for x,y in F.

Can correct up to ((|F| - |H|)/2)? errors, (|F| - |H|)/2
In each dimension separately.

Lect 08 Coded Computation | CS257 © John E Savage 36

Spielman’s Approach to
Reliable Computation

e Encode data as 2D codewords A(x,y), B(x,y).

o Apply polynomial #(x,y) to each value producing a
new codeword C(x, y) = #A(x,y), B(x,y)).

e After applying &4, decode and re-encode each row
(then column) of C(x, y) separately. The result is a
new codeword.

e By permuting codewords, one can simulate
computation on a hypercube.

Lect 08 Coded Computation | CS257 © John E Savage 37

