
CS257
Introduction to

Nanocomputing

Codes and Finite Fields

John E Savage

Lect 08 Coded Computation I CS257 © John E Savage 2

Lecture Outline

Motivation

Error Correcting Codes

Reed Solomon Codes

Spielman’s approach

Lect 08 Coded Computation I CS257 © John E Savage 3

Efficient Reliable Circuits

The goal: To reduce the redundancy of an
unreliable circuit simulating a reliable one.

The approach: To replace the repetition
code with a more efficient one.

Lect 08 Coded Computation I CS257 © John E Savage 4

Building Reliable Circuits

Prevent gate failures from making circuit
failure rates prohibitively high.

Use error correcting codes to detect and
correct circuit failures.

Lect 08 Coded Computation I CS257 © John E Savage 5

Error Correcting Codes
An error-correcting code is a set of n-tuples
over an alphabet ∑, called codewords.

The distance between two codewords is the
number of places in which they differ.

The minimum distance of a code is the
minimum over all pairs of codewords of the
distance between them.

Lect 08 Coded Computation I CS257 © John E Savage 6

(n,k,d)q Block Codes
An (n,k,d)q block code.

Message length = k
Block length n
Rate R = k/n
Minimum distance d
Alphabet size = q

Shannon showed that, as k increase, R need
not go to 0 to accommodate an error rate < .5
It is not known if this holds for computation.

Lect 08 Coded Computation I CS257 © John E Savage 7

Hamming Code
Encode b = (b0, b1, b2, b3) as bG where

G is the generator matrix.
This is a (7,4,3)2 code. Why is d = 3?

Compare b1G and b2G where b1 ≠ b2.

Note that b1G ⊕b2G (term-by-term XOR) is equivalent to
b3G where b3 = b1 ⊕b2.

Lect 08 Coded Computation I CS257 © John E Savage 8

Generalized Hamming Code

Let n = 2k-1. The (n,k,3)2 Hamming code has
the following generator matrix.

Here Bk x n-k contains all k-tuples except for
0n-k and the weight 1 k-tuples.

Lect 08 Coded Computation I CS257 © John E Savage 9

Decoding Hamming Codes

Let n = 2k-1. Form n x k matrix H.

If w is a Hamming codeword, wH = 0.
If w⊕e is received, s = (w⊕e)H = eH. Since
all single errors can be corrected (|e| = 1),
each syndrome s is associated with a
unique row of H!

Lect 08 Coded Computation I CS257 © John E Savage 10

Linear Block Codes
Generalization of Hamming Codes

In a linear block code, the vector sum of two
codewords is another codeword.

Linear codes can be defined by generator
matrices.

A basis exists for this linear space
A codeword is linear combination of basis vectors.

Lect 08 Coded Computation I CS257 © John E Savage 11

Binary Error Correcting Codes

Let addition over ∑ be ∆ (Exclusive OR)

The Hamming distance d(c,c’) between two
binary codewords c, c’ is the weight (number
of 1s in) of their component-wise sum ∆.

d(c,c’) = |(1,0,1,1,0,0)| = 3.

Lect 08 Coded Computation I CS257 © John E Savage 12

Non-Binary Codes
Codewords defined over non-binary ∑.

Generally ∑ = F, a finite field.
All finite fields have |F| = pm for prime p and
integer m. They are called Galois fields GF(pm).
Fields have addition (+) and multiplication (*)
operators, constants 0 and 1. Usual associative
and distributive laws hold.
Elements of GF(q) are {0, 1, α, α2,…, αq-2}, q=pm

Linear codes are codes in which the vector
sum of two codewords is another codeword.

Lect 08 Coded Computation I CS257 © John E Savage 13

Generating Linear Codewords
Codewords are linear combinations of the rows of a
k×n matrix

A linear combination results from pre-multiplication
of G by a binary vector u = (u0,u1,u2)

(1,1,0)G = (1,1,0,1,0).
Codeword c = (u0,u1,u2,c1,c2) where ui is an information
bit and ci is a check bit

Lect 08 Coded Computation I CS257 © John E Savage 14

More on Linear Codewords
Assume without loss of generality that rows
of generator matrix are linearly independent.

Given input u e Fk, its codeword is c = uG.

A k×n generator matrix can be put into
standard form by elementary row operations
and column permutations, G = [Ik, A], where
Ik is the k×k identity matrix and A is a k×(n-k)
matrix over F.

Lect 08 Coded Computation I CS257 © John E Savage 15

The Parity Check Matrix

The parity check matrix where
In-k is the (n-k)×(n-k) identity matrix.

Every codeword c generated by G is in the
null space of H, that is, cH = 0.

This follows because for some u, c = uG and
GH = [Ik(-A)+ AIn-k] = 0 = [0k] where 0k is the k×k
zero matrix.

Lect 08 Coded Computation I CS257 © John E Savage 16

The Minimum Distance of a
Linear Code

The Hamming distance d(c1,c2) between
two linear codewords c1 and c2 is the
number of non-zero components in their
term-by-term difference c1 - c2, that is,
d(c1,c2) = |c1-c2|.

Because the difference between codewords
in a linear code is another codeword, the
minimum distance d is the weight of the
smallest weight codeword.

Lect 08 Coded Computation I CS257 © John E Savage 17

Minimum Distance (Projection)
Bound

Distance bound for (n,k,d)q codes: d ≤n-k+1
Project the qk codewords onto first k-1 positions.
By pigeon-hole principle, at least two codewords
have these k positions in common.
Thus, the minimum distance d ≤ n-k+1.

Lect 08 Coded Computation I CS257 © John E Savage 18

Correcting Errors
If a codeword c is sent over a noisy channel and e
errors occur, e ≤ (d-1)/2, the resulting word r = c + e
is closer (has fewer differences from) to the
transmitted word than to any other codeword.

For c’ ≠ c, d(c’,c) =|c’-c| =|c’-r + r-c| ≤ |c’-r|+ |r-c| but |c’-c| ≥
d and |r-c| = e. Thus, |c’-r| ≥ (d+1)/2 and r is closer to c than
to any other codeword.

Errors stat. independent with prob. p
P(e errors) =
Minimizing e minimizes prob of error

Lect 08 Coded Computation I CS257 © John E Savage 19

Decoding a Linear Code
Given r, find closest codeword c’, i.e. D(r) = c’.

Can decoding errors occur?

Equivalently, given received word r compute the
syndrome s = rH = (c+e)H = eH.

The syndrome is a function only of the errors
Possible that r = c’ + e’ where |e’| ≤ |e|.

Given r find smallest weight e’ satisfying s. Add to r.

Lect 08 Coded Computation I CS257 © John E Savage 20

(n,k,d)q Reed Solomon Codes

To encode message (a0,a1,…,an-1), ai in
GF(q), evaluate s(x) = a0 +a1x + … +an-1xn-1

for all x in GF(q)

Codeword associated with (a0,a1,…,an-1) is
s = (r(0), r(1), r(α), r(α2), …, r(αq-2))

Given y in GF(q), the n such that y = αn is the
discrete log. It arises in cryptography.

Lect 08 Coded Computation I CS257 © John E Savage 21

Fields (F,+,x,0,1)

F is a countable set, + and are associative
“addition” and “multiplication” operators
0 & 1 are identity under addition and
multiplication respectively.

F is commutative and associative under + and x.
x distributes over +
Additive inverse exists for each element
Multiplicative inverse exists for F - {0}.

Lect 08 Coded Computation I CS257 © John E Savage 22

Finite Fields (Galois Fields)

All finite fields have pn elements for p prime,
n integer, denoted GF(pn).

Examples: GF(3), GF(8)

GF(pn) isomorphic to polynomials of degree
n-1 over GF(p) where addition is component-
wise polynomial addition and multiplication is
modulo an irreducible (no factors over GF(p))
polynomial over GF(p) of degree n.

Lect 08 Coded Computation I CS257 © John E Savage 23

Example of Finite Field
GF(22) isomorphic to {p(x) = a0+a1x} where ai in
GF(2) = {0,1}/mod 2.

Addition component-wise mod 2.
(x) + (1+x) = (1 + 2x) = (1)

Multiplication is modulo x2+x+1.
(x) * (1+x) = (x + x2) mod x2+x+1

Replace x2 by –(x+1) = x+1 and add
(x) * (1+x) = x+1+x = 1

(x) and (1+x) are multiplicative inverses

Lect 08 Coded Computation I CS257 © John E Savage 24

Characterization of GF(q)

The multiplicative group of every Galois field
is cyclic. I.e., all of the non-zero elements can
be represented as powers of a generator α.

GF(q) = {0, 1, α, …, αj , …, αq-2 }

Every y of GF(q) is root of xq-x.
Clearly, y = 0 is a root. Others are roots of xq-1-1
Since (x-1) is a factor of xq-1-1, 1 is in GF(q).
Other elements are roots of 1+x+x2+…+xq-1.

Lect 08 Coded Computation I CS257 © John E Savage 25

(n,k,d)q Reed Solomon Codes

To encode message (a0,a1,…,an-1), a1 in
GF(q), evaluate s(x) = a0 +a1x + … +an-1xn-1

for all x in GF(q)

Codeword associated with (a0,a1,…,an-1) is
s = (r(0), r(1), r(α), r(α2), …, r(αq-2))

Given y in GF(q), the n such that y = αn is the
discrete log. It arises in cryptography.

Lect 08 Coded Computation I CS257 © John E Savage 26

Minimum Distance of RS
Codes

Minimum dist. of (n,k,d)q RS code is d =n-k+1
Consider codewords s and t.
Distance between them is non-zeroes in s-t = u.
But u(x) = s(x)-t(x) is polynomial of degree k-1.
But u(x) of degree k can have at most k-1 zeros.
Thus, d ≥ n-k+1.
But d ≤ n-k+1 for all (n,k,d)q codes.

Lect 08 Coded Computation I CS257 © John E Savage 27

Implementing RS Codes

If Galois field is GF(2m), (n,k,n-k+1)q RS code
(q = n = 2m) is a (n log2 n, k log2 n,n-k+1)2
binary code.
RS codes are used on CDs and DVDs to
correct against burst errors due to dust or
scratches.
Codewords can also be interlaced to help
“decorrelate” errors.

Lect 08 Coded Computation I CS257 © John E Savage 28

Encoding RS Codes

RS code is defined by k coefficients.

The code is linear (matrix non-sing.)

Lect 08 Coded Computation I CS257 © John E Savage 29

Decoding (n,k,n-k+1)q Reed
Solomon Codes

Let {βj | 1 ≤ j ≤ n} be elements of GF(q).

Sent codeword s = (r(β1), r(β2),…, r(βn)).

Received word r = (ρ1, ρ2, …, ρn)

RS code can correct up to (n-k)/2 errors.
Remaining n - (n-k)/2 = (n+k)/2 positions correct.

Decoding problem:
Given {(βj , ρj) | 1 ≤ j ≤ n}, find polynomial p(x) over GF(q)
with degree at most k such p(βj) = ρj for at least (n+k)/2
values of j.

Lect 08 Coded Computation I CS257 © John E Savage 30

Decoding RS Codes
Let F = GF(pm).
The decoding function DH,F : FF Ø FH » {?}
either maps received word a = (a1,a2,…, a|F|)
to a codeword b = (b1,b2,…, b|F|) at distance
≤ (|F| - |H|)/2 from it or it maps it to “?”.

A decoder solves system with above matrix

Lect 08 Coded Computation I CS257 © John E Savage 31

Extended RS Codes
Polynomial m(x): F Ø F associated with t: H Ø F

t: H Ø F is in FH ; m(x): F Ø F is in FF.

Elements of F = GF(pm) are denoted 0, α, α2, α3, …,
αq-1 where q = pm.

RS codeword associated with t: H Ø F is
(m(0),m(α),…,m(αq-1)), where t(hi) = m(hi),

m has |H| information bits, and |F| - |H| check bits.

Encoding function EH,F : FH Ø FF

Lect 08 Coded Computation I CS257 © John E Savage 32

Generating
Extended RS Codewords

Let F = GF(pm) and H Õ F where H =
(h1,…,h|H|) and F = (f1,…,f|F|)

Given t: H Ø F, a function, let m(x): F Ø F
interpolate t over F, that is, m(hi) = t(hi).

Note: coefficients of m(x) are drawn from F.

Lect 08 Coded Computation I CS257 © John E Savage 33

Decoding Reed Solomon
Codes

Theorem The encoding and decoding functions
EH,F : FH Ø FF and DH,F : FF Ø FH » {?} for RS
codes can be computed by circuits of size |F|
logO(1)|F|.

Proof Due to Justesen [76] and Sarwate [77].

Lect 08 Coded Computation I CS257 © John E Savage 34

Error Correction Function

It maps a received word to either “?” or to a
codeword, denoted

D’s superscript means it corrects ≤ k errors.

Theorem (Kaltofen-Pan) There’s a randomized
algorithm solving k×k Toeplitz (elements on
diagonals the same) over finite field with
probability 1-1/k in time logO(1) k using
k2logO(1) k processors.

Lect 08 Coded Computation I CS257 © John E Savage 35

Probabilistic RS Decoding
Algorithm

It maps a received word to either “?” or to a
codeword, denoted

D’s superscript means it corrects ≤ k errors.

Theorem The decoding function can be
computed by a randomized parallel algorithm that
takes time on
processors to correct errors. The
algorithm succeeds with prob. 1-1/|F|.
Use this algorithm with k =

Lect 08 Coded Computation I CS257 © John E Savage 36

Generalized RS Codes

Extend 2D RS codes to 2D generalized RS
codes when F = GF(2m).

Since F2 = GF(2(m+1)), F2 is also a finite field.

Encode in first dimension, then in second.
Decode in reverse order.

Components codeword are ax,y for x,y in F.
Can correct up to ((|F| - |H|)/2)2 errors, (|F| - |H|)/2
in each dimension separately.

Lect 08 Coded Computation I CS257 © John E Savage 37

Spielman’s Approach to
Reliable Computation

Encode data as 2D codewords A(x,y), B(x,y).

Apply polynomial f(x,y) to each value producing a
new codeword C(x, y) = f(A(x,y), B(x,y)).

After applying f, decode and re-encode each row
(then column) of C(x, y) separately. The result is a
new codeword.

By permuting codewords, one can simulate
computation on a hypercube.

