CS257 Introduction to Nanocomputing

Codes and Finite Fields John E Savage

Lecture Outline

- Motivation
- Error Correcting Codes
- Reed Solomon Codes
- Spielman's approach

Efficient Reliable Circuits

- The goal: To reduce the redundancy of an unreliable circuit simulating a reliable one.
- The approach: To replace the repetition code with a more efficient one.

Building Reliable Circuits

- Prevent gate failures from making circuit failure rates prohibitively high.
- Use error correcting codes to detect and correct circuit failures.

Error Correcting Codes

- An error-correcting code is a set of n-tuples over an alphabet \sum, called codewords.
- The distance between two codewords is the number of places in which they differ.
- The minimum distance of a code is the minimum over all pairs of codewords of the distance between them.
$(n, k, d)_{q}$ Block Codes
- An $(n, k, d)_{\mathrm{q}}$ block code.
- Message length = k
- Block length n
- Rate $R=k / n$
- Minimum distance d
- Alphabet size = q
- Shannon showed that, as k increase, R need not go to 0 to accommodate an error rate $<.5$
- It is not known if this holds for computation.

Hamming Code

- Encode $\boldsymbol{b}=\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$ as $\boldsymbol{b} G$ where

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

- G is the generator matrix.
- This is a $(7,4,3)_{2}$ code. Why is $d=3$?
- Compare $\boldsymbol{b}_{1} G$ and $\boldsymbol{b}_{2} G$ where $\boldsymbol{b}_{1} \neq \boldsymbol{b}_{2}$.
- Note that $\boldsymbol{b}_{1} \boldsymbol{G} \oplus \boldsymbol{b}_{2} \mathbf{G}$ (term-by-term XOR) is equivalent to $\boldsymbol{b}_{3} G$ where $\boldsymbol{b}_{3}=\boldsymbol{b}_{1} \oplus \boldsymbol{b}_{2}$.

Generalized Hamming Code

- Let $n=2^{k}-1$. The (n,k,3) Hamming code has the following generator matrix.

$$
G=\left[\begin{array}{ll}
I_{k \times k} & B_{k \times n-k}
\end{array}\right]
$$

- Here $B_{k \times n-k}$ contains all k-tuples except for 0^{n-k} and the weight $1 k$-tuples.

Decoding Hamming Codes

- Let $n=2^{k}-1$. Form $n \times k$ matrix H .

$$
H=\left[\begin{array}{c}
B_{k \times n-k} \\
I_{n-k \times n-k}
\end{array}\right]
$$

- If \boldsymbol{w} is a Hamming codeword, $\boldsymbol{w H}=\mathbf{0}$.
- If $\boldsymbol{w} \oplus \boldsymbol{e}$ is received, $\boldsymbol{s}=(\boldsymbol{w} \oplus \boldsymbol{e}) \mathrm{H}=\boldsymbol{e H}$. Since all single errors can be corrected ($|\boldsymbol{e}|=1$), each syndrome s is associated with a unique row of H !

Linear Block Codes

- Generalization of Hamming Codes
- In a linear block code, the vector sum of two codewords is another codeword.
- Linear codes can be defined by generator matrices.
- A basis exists for this linear space
- A codeword is linear combination of basis vectors.

Binary Error Correcting Codes

- Let addition over \sum be \oplus (Exclusive OR)
- The Hamming distance $\boldsymbol{d}\left(\mathbf{c}, \boldsymbol{c}^{\prime}\right)$ between two binary codewords $\boldsymbol{c}, \boldsymbol{c}$ ' is the weight (number of 1 s in) of their component-wise sum \oplus.
$(0,1,1,0,0,1) \oplus(1,1,0,1,0,1)=(1,0,1,1,0,0)$
- $d\left(\boldsymbol{c}, \boldsymbol{c}^{\prime}\right)=|(1,0,1,1,0,0)|=3$.

Non-Binary Codes

- Codewords defined over non-binary Σ.
- Generally $\Sigma=F$, a finite field.
- All finite fields have $|F|=p^{m}$ for prime p and integer m. They are called Galois fields GF $\left(p^{m}\right)$.
- Fields have addition (+) and multiplication (*) operators, constants 0 and 1. Usual associative and distributive laws hold.
- Elements of GF(q) are $\left\{0,1, \alpha, \alpha^{2}, \ldots, \alpha^{q-2}\right\}, q=p^{m}$
- Linear codes are codes in which the vector sum of two codewords is another codeword.

Generating Linear Codewords

- Codewords are linear combinations of the rows of a $k \times n$ matrix

$$
G=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

- A linear combination results from pre-multiplication of G by a binary vector $\mathbf{u}=\left(u_{0}, u_{1}, u_{2}\right)$
- ($1,1,0$) $G=(1,1,0,1,0)$.
- Codeword $\boldsymbol{c}=\left(u_{0}, u_{1}, u_{2}, c_{1}, c_{2}\right)$ where u_{i} is an information bit and c_{i} is a check bit

More on Linear Codewords

- Assume without loss of generality that rows of generator matrix are linearly independent.
- Given input $\boldsymbol{u} \in F^{k}$, its codeword is $\boldsymbol{c}=\boldsymbol{u} G$.
- A $k \times n$ generator matrix can be put into standard form by elementary row operations and column permutations, $\mathrm{G}=\left[I_{k}, \mathrm{~A}\right]$, where I_{k} is the $k \times k$ identity matrix and A is a $k \times(n-k)$ matrix over F.

The Parity Check Matrix

- The parity check matrix $H=\left[\begin{array}{c}-A \\ I_{n-k}\end{array}\right]$ where I_{n-k} is the $(n-k) \times(n-k)$ identity matrix.
- Every codeword \mathbf{c} generated by G is in the null space of H, that is, $\boldsymbol{c H}=\mathbf{0}$.
- This follows because for some $\boldsymbol{u}, \boldsymbol{c}=\boldsymbol{u} G$ and $G H=\left[I_{k}(-A)+A I_{n-k}\right]=0=\left[O_{k}\right]$ where O_{k} is the $k \times k$ zero matrix.

The Minimum Distance of a Linear Code

- The Hamming distance $d\left(c_{1}, c_{2}\right)$ between two linear codewords \boldsymbol{c}_{1} and \boldsymbol{c}_{2} is the number of non-zero components in their term-by-term difference $\boldsymbol{c}_{\boldsymbol{1}}-\boldsymbol{c}_{2}$, that is, $d\left(\boldsymbol{c}_{1}, \boldsymbol{c}_{2}\right)=\left|\mathbf{c}_{1}-\mathbf{c}_{2}\right|$.
- Because the difference between codewords in a linear code is another codeword, the minimum distance \boldsymbol{d} is the weight of the smallest weight codeword.

Minimum Distance (Projection) Bound

- Distance bound for ($\mathrm{n}, \mathrm{k}, \mathrm{d})_{\mathrm{q}}$ codes: $\mathbf{d} \leq \mathbf{n}-\mathbf{k + 1}$
- Project the q^{k} codewords onto first k-1 positions.
- By pigeon-hole principle, at least two codewords have these k positions in common.
- Thus, the minimum distance $\mathrm{d} \leq \mathrm{n}-\mathrm{k}+1$.

Correcting Errors

- If a codeword \boldsymbol{c} is sent over a noisy channel and e errors occur, $e \leq(d-1) / 2$, the resulting word $\boldsymbol{r}=\boldsymbol{c}+\boldsymbol{e}$ is closer (has fewer differences from) to the transmitted word than to any other codeword.
- For $\boldsymbol{c}^{\prime} \neq \boldsymbol{c}, d\left(\boldsymbol{c}^{\prime}, \boldsymbol{c}\right)=\left|\boldsymbol{c}^{\prime}-\boldsymbol{c}\right|=\left|\boldsymbol{c}^{\prime}-\boldsymbol{r}+\boldsymbol{r}-\mathbf{c}\right| \leq\left|\boldsymbol{c}^{\prime}-\boldsymbol{r}\right|+|\boldsymbol{r}-\boldsymbol{c}|$ but $\left|\boldsymbol{c}^{\prime}-\boldsymbol{c}\right| \geq$ d and $|r-c|=e$. Thus, $\left|c^{\prime}-r\right| \geq(d+1) / 2$ and r is closer to c than to any other codeword.
- Errors stat. independent with prob. p
- $\mathrm{P}(e$ errors $)=\binom{n}{e} p^{e}(1-p)^{n-e}$
- Minimizing e minimizes prob of error

Decoding a Linear Code

- Given \boldsymbol{r}, find closest codeword \boldsymbol{c}^{\prime}, i.e. $\mathrm{D}(\boldsymbol{r})=\boldsymbol{c}^{\prime}$.
- Can decoding errors occur?
- Equivalently, given received word r compute the syndrome s $=r H=(c+e) H=e H$.
- The syndrome is a function only of the errors
- Possible that $\boldsymbol{r}=\boldsymbol{c}^{\prime}+\boldsymbol{e}^{\prime}$ where $\left|\boldsymbol{e}^{\prime}\right| \leq|\boldsymbol{e}|$.
- Given \boldsymbol{r} find smallest weight \boldsymbol{e} ' satisfying \boldsymbol{s}. Add to \boldsymbol{r}.

($\mathrm{n}, \mathrm{k}, \mathrm{d})_{\mathrm{q}}$ Reed Solomon Codes

- To encode message ($a_{0}, a_{1}, \ldots, a_{n-1}$), a_{i} in $G F(q)$, evaluate $s(x)=a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}$ for all x in $\mathrm{GF}(q)$
- Codeword associated with $\left(\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}-1}\right)$ is $\mathbf{s}=\left(r(0), r(1), r(\alpha), r\left(\alpha^{2}\right), \ldots, r\left(\alpha^{q-2}\right)\right)$
- Given y in GF(q), the n such that $y=\alpha^{n}$ is the discrete log. It arises in cryptography.

Fields (F,+,x,0,1)

- F is a countable set, + and are associative "addition" and "multiplication" operators
- 0 \& 1 are identity under addition and multiplication respectively.
- F is commutative and associative under + and x.
- x distributes over +
- Additive inverse exists for each element
- Multiplicative inverse exists for F-\{0\}.

Finite Fields (Galois Fields)

- All finite fields have p^{n} elements for p prime, n integer, denoted $\operatorname{GF}\left(p^{n}\right)$.
- Examples: GF(3), GF(8)
- $\operatorname{GF}\left(p^{n}\right)$ isomorphic to polynomials of degree $n-1$ over $\operatorname{GF}(p)$ where addition is componentwise polynomial addition and multiplication is modulo an irreducible (no factors over GF(p)) polynomial over GF(p) of degree n.

Example of Finite Field

- $G F\left(2^{2}\right)$ isomorphic to $\left\{p(x)=a_{0}+a_{1} x\right\}$ where a_{i} in $G F(2)=\{0,1\} / \bmod 2$.
- Addition component-wise mod 2.
- $(x)+(1+x)=(1+2 x)=(1)$
- Multiplication is modulo $x^{2}+x+1$.
- $(x)^{*}(1+x)=\left(x+x^{2}\right) \bmod x^{2}+x+1$
- Replace x^{2} by $-(x+1)=x+1$ and add
- $(x)^{*}(1+x)=x+1+x=1$
- (x) and (1+x) are multiplicative inverses

Characterization of GF(q)

- The multiplicative group of every Galois field is cyclic. I.e., all of the non-zero elements can be represented as powers of a generator α.
- $\operatorname{GF}(q)=\left\{0,1, \alpha, \ldots, \alpha^{j}, \ldots, \alpha^{q-2}\right\}$
- Every y of $G F(q)$ is root of $x^{q}-x$.
- Clearly, $y=0$ is a root. Others are roots of $x^{q-1}-1$
- Since ($x-1$) is a factor of $x^{q-1}-1,1$ is in GF(q).
- Other elements are roots of $1+x+x^{2}+\ldots+x^{q-1}$.

($\mathrm{n}, \mathrm{k}, \mathrm{d})_{\mathrm{q}}$ Reed Solomon Codes

- To encode message ($a_{0}, a_{1}, \ldots, a_{n-1}$), a_{1} in $G F(q)$, evaluate $s(x)=a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}$ for all x in $\mathrm{GF}(q)$
- Codeword associated with $\left(\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}-1}\right)$ is $\mathbf{s}=\left(r(0), r(1), r(\alpha), r\left(\alpha^{2}\right), \ldots, r\left(\alpha^{q-2}\right)\right)$
- Given y in GF(q), the n such that $y=\alpha^{n}$ is the discrete log. It arises in cryptography.

Minimum Distance of RS Codes

- Minimum dist. of $(n, k, d)_{\mathrm{q}}$ RS code is $d=n-k+1$
- Consider codewords sand \mathbf{t}.
- Distance between them is non-zeroes in s-t =u.
- But $u(x)=s(x)-t(x)$ is polynomial of degree $k-1$.
- But $u(x)$ of degree k can have at most $k-1$ zeros.
- Thus, $d \geq n-k+1$.
- But $d \leq n-k+1$ for all $(n, k, d)_{q}$ codes.

Implementing RS Codes

- If Galois field is $\operatorname{GF}\left(2^{m}\right),(n, k, n-k+1)_{q} R S$ code $\left(q=n=2^{m}\right)$ is a $\left(n \log _{2} n, k \log _{2} n, n-k+1\right)_{2}$ binary code.
- RS codes are used on CDs and DVDs to correct against burst errors due to dust or scratches.
- Codewords can also be interlaced to help "decorrelate" errors.

Encoding RS Codes

- RS code is defined by k coefficients.

$$
\begin{array}{ll}
m(0) & =m_{0} \\
m(\alpha) & =m_{0}+m_{1} \alpha+\ldots+m_{k} \alpha^{k} \\
m\left(\alpha^{2}\right) & =m_{0}+m_{1} \alpha^{2}+\ldots+m_{k} \alpha^{2(k-1)} \\
& \vdots \\
m\left(\alpha^{q-1}\right) & =m_{0}+m_{1} \alpha^{q-1}+\ldots+m_{k} \alpha^{(q-1)(k-1)}
\end{array}
$$

- The code is linear (matrix non-sing.)

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
1 & \alpha & \alpha^{2} & \cdots & \alpha^{(q-1)} \\
1 & \alpha^{2} & \alpha^{4} & \cdots & \alpha^{2(q-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha^{q-1} & \alpha^{2(q-1)} & \cdots & \alpha^{(q-1)(q-1)}
\end{array}\right] \cdot\left[\begin{array}{c}
m_{0} \\
m_{1} \\
m_{2} \\
\vdots \\
m_{q-1}
\end{array}\right]=\left[\begin{array}{c}
m(0) \\
m(\alpha) \\
m\left(\alpha^{2}\right) \\
\vdots \\
m\left(\alpha^{q-1}\right)
\end{array}\right]
$$

Decoding ($n, k, n-k+1)_{q}$ Reed Solomon Codes

- Let $\left\{\beta_{j} \mid 1 \leq j \leq n\right\}$ be elements of $\operatorname{GF}(q)$.
- Sent codeword $\mathbf{s}=\left(r\left(\beta_{1}\right), r\left(\beta_{2}\right), \ldots, r\left(\beta_{n}\right)\right)$.
- Received word $\mathbf{r}=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{n}\right)$
- RS code can correct up to ($n-k) / 2$ errors.
- Remaining $n-(n-k) / 2=(n+k) / 2$ positions correct.
- Decoding problem:
- Given $\left\{\left(\beta_{j}, \rho_{j}\right) \mid 1 \leq j \leq n\right\}$, find polynomial $p(x)$ over GF(q) with degree at most k such $p\left(\beta_{j}\right)=\rho_{j}$ for at least $(n+k) / 2$ values of j.

Decoding RS Codes

- Let $F=\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$.
- The decoding function $D_{H, F}: F^{F} \rightarrow F^{H} \cup\{?\}$ either maps received word $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{\mid F}\right)$ to a codeword $\boldsymbol{b}=\left(b_{1}, b_{2}, \ldots, b_{\mid F}\right)$ at distance $\leq(|F|-|H|) / 2$ from it or it maps it to "?".

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
1 & \alpha & \alpha^{2} & \cdots & \alpha^{(q-1)} \\
1 & \alpha^{2} & \alpha^{4} & \cdots & \alpha^{2(q-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha^{q-1} & \alpha^{2(q-1)} & \cdots & \alpha^{(q-1)(q-1)}
\end{array}\right]
$$

- A decoder solves system with above matrix

Extended RS Codes

- Polynomial $m(x): F \rightarrow F$ associated with $\tau: H \rightarrow F$
- $\tau: H \rightarrow F$ is in $F^{H} ; m(x): F \rightarrow F$ is in F^{F}.
- Elements of $F=G F\left(p^{m}\right)$ are denoted $0, \alpha, \alpha^{2}, \alpha^{3}, \ldots$, α^{q-1} where $q=p^{m}$.
- RS codeword associated with $\tau: H \rightarrow F$ is ($\left.m(0), m(\alpha), \ldots, m\left(\alpha^{q-1}\right)\right)$, where $\tau\left(h_{j}\right)=m\left(h_{j}\right)$, - m has $|\mathrm{H}|$ information bits, and $|\mathrm{F}|-|\mathrm{H}|$ check bits.
- Encoding function $E_{H, F}: F^{H} \rightarrow F^{F}$

Generating Extended RS Codewords

- Let $F=\operatorname{GF}\left(p^{m}\right)$ and $H \subset F$ where $H=$ $\left(h_{1}, \ldots, h_{|H|}\right)$ and $F=\left(f_{1}, \ldots, f_{|F|}\right)$
- Given $\tau: H \rightarrow F$, a function, let $m(x): F \rightarrow F$ interpolate τ over F, that is, $m\left(h_{i}\right)=\tau\left(h_{j}\right)$.

$$
\begin{aligned}
m(x) & =\sum_{i=1}^{|H|} \tau\left(h_{i}\right) \frac{\prod_{j \neq i}\left(x-h_{j}\right)}{\left.\prod_{j \neq i} h_{i}-h_{j}\right)} \\
& =m_{0}+m_{1} x+m_{2} x^{2}+\ldots m_{|H|-1} x^{|H|-1}
\end{aligned}
$$

- Note: coefficients of $m(x)$ are drawn from F.

Decoding Reed Solomon Codes

Theorem The encoding and decoding functions
$E_{H, F}: F^{H} \rightarrow F^{F}$ and $D_{H, F}: F^{F} \rightarrow F^{H} \cup\{?\}$ for RS codes can be computed by circuits of size $|F|$ $\log ^{O(1)}|F|$.

Proof Due to Justesen [76] and Sarwate [77].

Error Correction Function

- It maps a received word to either "?" or to a codeword, denoted $D_{H, F}^{k}: F^{F} \mapsto F^{F} \cup\{?\}$
- D 's superscript means it corrects $\leq k$ errors.

Theorem (Kaltofen-Pan) There's a randomized algorithm solving $k \times k$ Toeplitz (elements on diagonals the same) over finite field with probability $1-1 / k$ in time $\log ^{\mathrm{O}(1)} k$ using $k^{2} \log ^{O(1)} k$ processors.

Probabilistic RS Decoding Algorithm

- It maps a received word to either "?" or to a codeword, denoted $D_{H, F}^{k}: F^{F} \mapsto F^{F} \cup\{?\}$
- D's superscript means it corrects $\leq k$ errors.

Theorem The decoding function $D_{H, F}^{k}$ can be computed by a randomized parallel algorithm that takes $\log O(1)|F|$ time on $\left(k^{2}+|F|\right) \log { }^{O(1)}|F|$ processors to correct $k \leq(|F|-|H|) / 2$ errors. The algorithm succeeds with prob. 1-1/|F|.

- Use this algorithm with $k=\sqrt{|F|}$

Generalized RS Codes

- Extend 2D RS codes to 2D generalized RS codes when $F=G F\left(2^{m}\right)$.
- Since $F^{2}=G F\left(2^{(m+1)}\right), F^{2}$ is also a finite field. $E_{H^{2}, F}: F^{H^{2}} \mapsto F^{F^{2}}, \quad D_{H^{2}, F}^{k}: F^{F^{2}} \mapsto F^{F^{2}} \cup\{?\}$
- Encode in first dimension, then in second. Decode in reverse order.
- Components codeword are $a_{x, y}$ for x, y in F.
- Can correct up to $((|F|-|H|) / 2)^{2}$ errors, $(|F|-|H|) / 2$ in each dimension separately.

Spielman's Approach to Reliable Computation

- Encode data as 2D codewords $A(x, y), B(x, y)$.
- Apply polynomial $\phi(x, y)$ to each value producing a new codeword $C(x, y)=\phi(A(x, y), B(x, y))$.
- After applying ϕ, decode and re-encode each row (then column) of $C(x, y)$ separately. The result is a new codeword.
- By permuting codewords, one can simulate computation on a hypercube.

